Search results for "C-C coupling"

showing 10 items of 12 documents

An E-Factor Minimized Protocol for a Sustainable and Efficient Heck Reaction in Flow

2014

A highly sustainable and waste-minimized protocol for Heck coupling has been defined. Optimal conditions have been defined by exploiting a heterogeneous catalyst based on supported ionic liquid-like phases featuring high Pd loading (10 wt %) and by optimizing its efficiency in a recoverable green reaction medium (acetonitrile/water azeotrope). Pure products 4a–l and 6a–h have been isolated chromatography-free in high yields (74–99%) and with extremely low environmental factor (E-factor) values (2.3–5.0). With the application of flow technology, the selected heterogeneous base and Pd catalyst have been fully recovered and reused, and minimum palladium leaching allowed for isolation of the fi…

Green chemistrygreen chemistryRenewable Energy Sustainability and the EnvironmentChemistryGeneral Chemical Engineeringchemistry.chemical_elementcross-coupling. palladiumSettore CHIM/06 - Chimica OrganicaGeneral ChemistryFlow chemistryHeterogeneous catalysisCatalysischemistry.chemical_compoundChemical engineeringHeck reactioncontinuous flowEnvironmental ChemistryOrganic chemistryLeaching (metallurgy)C-C couplingAcetonitrilecross-coupling. palladium green chemistryPalladiumPalladiumACS Sustainable Chemistry & Engineering
researchProduct

Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine

2011

International audience; Previous publication of the authors presented evidences that electroch emical oxidation of Mg(II) porphine (fully unsubstituted porphyrin, MgP) in acetonitrile (AN) at a very low potential leads to deposition of films at electrode surface corresponding to typical electroactive polymers, with their reversible transition betwee n the electronconducting and insulating states depending on the electrode potential/oxidation level ("film of type I"). It is demonstrated in the actual publication that these films in contact with a monomer-free solution are subject to an irreversible transformation to quite a different material ("film of type II") under the influence of a high…

General Chemical EngineeringAnalytical chemistryInfrared spectroscopy02 engineering and technology010402 general chemistryElectrochemistry01 natural scienceschemistry.chemical_compoundTransition metalX-ray photoelectron spectroscopy[CHIM.ANAL]Chemical Sciences/Analytical chemistryelectroactive materialsElectrochemistryMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryconducting polymermagnesium porphineConductive polymer[CHIM.ORGA]Chemical Sciences/Organic chemistryelectropolymerization[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMonomerchemistryPhysical chemistryC-C coupling0210 nano-technologyunsubstituted porphyrinElectrode potentialElectrochimica Acta
researchProduct

Palladium Supported on Cross-Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions

2013

Highly cross-linked imidazolium-based materials, obtained by radical oligomerization of bis-vinylimidazolium salts in the presence of 3-mercaptopropyl-modified silica gel, were used as supports for palladium catalysts. Thanks to the high imidazolium loading these materials were able to support a high amount of the metal (10 wt%). Such materials were characterized by several techniques (13C magic angle spinning nuclear magnetic resonance, the Brunauer-Emmett-Teller technique, X-ray photoelectron spectroscopy, and transmission electron microscopy). The palladium catalysts displayed good activity allowing the synthesis of several biphenyl compounds in high yields working with only 0.1 mol% of …

Green chemistryflow chemistryInorganic chemistrychemistry.chemical_elementCatalysisMetalchemistry.chemical_compoundSuzuki reactionMagic angle spinningsustainable chemistry; catalysis flow chemistrysustainable chemistryC C couplingSuzuki-Miyaura reactioncatalyst recyclingBiphenylcatalysisSilica gelSettore CHIM/06 - Chimica OrganicaGeneral ChemistrypalladiumSuzuki–Miyaura reactionchemistryvisual_artvisual_art.visual_art_mediumC-C couplingPalladiumAdvanced Synthesis & Catalysis
researchProduct

Catechol-Functionalized Carbon Nanotubes as Support for Pd Nanoparticles

2022

Carbon nanotubes have been covalently functionalized with catechol moieties through the formation of the corresponding aryl radicals obtained by reacting 4-aminocatechol with isoamyl nitrite. The functionalized multiwalled carbon nanotubes have been in turn used to immobilize Pd(II) ions on its surface forming catechol-Pd complexes, which were reduced to Pd nanoparticles (NPs). The so-obtained hybrid material has been characterized by means of thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). This latter technique allowed to estimate the nanoparticle size (5.7 +/- 2.8 nm) wh…

Heterogeneous catalysisSuzuki and Heck reactionsOrganic ChemistryC-C coupling reactionsC−C coupling reactionsCarbon nanotubesPhysical and Theoretical ChemistryPalladium nanoparticlesEuropean Journal of Organic Chemistry
researchProduct

DESIGN OF NOVEL IMIDAZOLIUM BASED NANOSTRUCTURES FOR SUSTAINABLE CATALYTIC APPLICATIONS

Imidazolium SaltHeterogeneous CatalystsCarbon Dioxide ConversionSettore CHIM/06 - Chimica OrganicaPolyhedral Oligomeric SilsesquioxaneCarbon NanostructureC-C CouplingPalladium
researchProduct

Templating effect of carbon nanoforms on highly cross-linked imidazolium network: Catalytic activity of the resulting hybrids with Pd nanoparticles

2019

Two different carbon nanoforms (CNFs), namely multi-walled carbon nanotubes (MWCNTs) and carbon nanohorns (CNHs), have been chosen as support for the direct polymerization of a bis-vinylimidazolium salt. Transmission electron microscopy analyses revealed a templating effect of the CNFs on the growth of the polymeric network, which perfectly covers their whole surfaces creating a cylindrical or spherical coating for MWCNTs and CNHs, respectively. Subsequently, the CNFs-polyimidazolium have been used as stabilizers for Pd nanoparticles (Pd NPs), and the obtained materials have been characterized by means of analytical and spectroscopic techniques and then employed as easily recoverable and re…

chemistry.chemical_elementSettore CHIM/06 - Chimica OrganicaGeneral ChemistryHeterogeneous catalysisCatalysisnanotubesInorganic ChemistrySuzuki–Miyaura reactionC c couplingHeck reactionheterogeneous catalysischemistryHeck reactionPd nanoparticlesPolymer chemistrynanotubeheterogeneous catalysiC-C couplingSuzuki-Miyaura reactionCarbon
researchProduct

Cross-Linked Thiazolidine Network as Support for Palladium: A New Catalyst for Suzuki and Heck Reactions

2015

A thiazolidine-based material was used for the first time as support for palladium. The support was prepared by starting from a highly cross-linked thiazolium-based material, obtained by radical oligomerization of a bisvinylthiazolium dibromide salt in the presence of 3-mercaptopropyl-modified silica SBA-15. Palladium was immobilized by treatment with tetrachloropalladate salt. Reduction with sodium borohydride afforded a thiazolidine-based material that acted as ligands for the Pd species. The thiazolidine-based palladium catalyst was fully characterized and, working in only 0.1 mol% amount, displayed good activity in the Suzuki-Miyaura and in the Heck reactions. Several biphenyl and alken…

metal catalysisThiazolidinechemistry.chemical_elementHeterogeneous catalysisCatalysisCatalysisInorganic Chemistrychemistry.chemical_compoundC c couplingN ligandsHeck reactioncross-couplingOrganic chemistryPhysical and Theoretical ChemistryS ligandsgreen chemistryOrganic ChemistrySettore CHIM/06 - Chimica Organicapalladiumheterogeneous catalysischemistryheterogeneous catalysis cross-coupling metal catalysis green chemistryheterogeneous catalysiC-C couplingPalladiumN ligand
researchProduct

Fullerene-ionic-liquid conjugates: a new class of hybrid materials with unprecedented properties.

2015

A modular approach has been followed for the synthesis of a series of fullerene-ionic-liquid (IL) hybrids in which the number of IL moieties (two or twelve), anion, and cation have been varied. The combination of C60 and IL give rise to new unique properties in the conjugates such as solubility in water, which was higher than 800 mg mL(-1) in several cases. In addition, one of the C60 -IL hybrids has been employed for the immobilization of palladium nanoparticles through ion exchange followed by reduction with sodium borohydride. Surprisingly, during the reduction several carbon nanostructures were formed that comprised nano-onions and nanocages with few-layer graphene sidewalls, which have…

Thermogravimetric analysisGraphenefullereneOrganic Chemistryhybrid materialGeneral ChemistrySettore CHIM/06 - Chimica OrganicaCatalysislaw.inventionchemistry.chemical_compoundSodium borohydrideNanocageschemistryX-ray photoelectron spectroscopylawIonic liquidnanostructuresOrganic chemistryC-C couplingHybrid materialHigh-resolution transmission electron microscopyNuclear chemistryionic liquidChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Proximity Effect using a Nanocage Structure: Polyhedral Oligomeric Silsesquioxane-Imidazolium Tetrachloro- palladate Salt as a Precatalyst for the Su…

2016

A polyhedral oligomeric silsesquioxane-imidazolium tetrachloropalladate salt (POSS-Imi-PdCl4) was prepared by the reaction of a polyhedral oligomeric silsesquioxane-imidazolium chloride salt (POSS-Imi-Cl) with PdCl2 and used as a pre-catalyst for the Suzuki-Miyaura reaction in water at 100 °C at a low loading (0.08-0.16 mol %). Biphenyl compounds were isolated in high to excellent yields. A comparison of the POSS-based catalyst with the corresponding catalyst without the nanocage structure (i.e., 1-butyl-3-methylimidazolium tetrachloropalladate) highlighted the role of the POSS structure to reach higher yields in the Suzuki-Miyaura reaction. This result is ascribed to a proximity effect of …

chemistry.chemical_elementSalt (chemistry)supported catalyst010402 general chemistry01 natural sciencesCatalysisCatalysisInorganic Chemistrychemistry.chemical_compoundNanocagesX-ray photoelectron spectroscopyPolymer chemistryOrganic chemistrysupported catalystsPhysical and Theoretical Chemistrychemistry.chemical_classification010405 organic chemistryChemistryOrganic Chemistrypalladiumcage compoundSilsesquioxane0104 chemical sciencesBiphenyl compoundphase-transfer catalysiphase-transfer catalysisC-C couplingcage compoundsProximity effect (atomic physics)Palladium
researchProduct

Carbocatalytic Oxidative Dehydrogenative Couplings of (Hetero)Aryls by Oxidized Multi‐Walled Carbon Nanotubes in Liquid Phase

2019

HNO3-oxidized carbon nanotubes catalyze oxidative dehydrogenative (ODH) carbon-carbon bond formation between electron-rich (hetero)aryls with O-2 as a terminal oxidant. The recyclable carbocatalytic method provides a convenient and an operationally easy synthetic protocol for accessing various benzofused homodimers, biaryls, triphenylenes, and related benzofused heteroaryls that are highly useful frameworks for material chemistry applications. Carbonyls/quinones are the catalytically active site of the carbocatalyst as indicated by model compounds and titration experiments. Further investigations of the reaction mechanism with a combination of experimental and DFT methods support the compet…

Reaction mechanism116 Chemical sciencesoxidative dehydrogenative couplingLiquid phaseOxidative phosphorylationCarbon nanotube010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysislaw.inventionlawcarbon nanotubecarbon nanotubesbiology010405 organic chemistryChemistryOrganic ChemistryC−C couplingCationic polymerizationcarbon nanotubes; C−C coupling; heterogeneous catalysis; oxidative dehydrogenative couplingActive siteGeneral ChemistryCombinatorial chemistry0104 chemical sciencesheterogeneous catalysisbiology.proteinheterogeneous catalysiTitrationC-C couplingChemistry – A European Journal
researchProduct